Crowd Scene Understanding with Coherent Recurrent Neural Networks

نویسندگان

  • Hang Su
  • Yinpeng Dong
  • Jun Zhu
  • Haibin Ling
  • Bo Zhang
چکیده

Exploring crowd dynamics is essential in understanding crowd scenes, which still remains as a challenging task due to the nonlinear characteristics and coherent spatio-temporal motion patterns in crowd behaviors. To address these issues, we present a Coherent Long Short Term Memory (cLSTM) network to capture the nonlinear crowd dynamics by learning an informative representation of crowd motions, which facilitates the critical tasks in crowd scene analysis. By describing the crowd motion patterns with a cloud of keypoint tracklets, we explore the nonlinear crowd dynamics embedded in the tracklets with a stacked LSTM model, which is further improved to capture the collective properties by introducing a coherent regularization term; and finally, we adopt an unsupervised encoder-decoder framework to learn a hidden feature for each input tracklet that embeds its inherent dynamics. With the learnt features properly harnessed, crowd scene understanding is conducted effectively in predicting the future paths of agents, estimating group states, and classifying crowd events. Extensive experiments on hundreds of public crowd videos demonstrate that our method is state-of-theart performance by exploring the coherent spatiotemporal structures in crowd behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Coherent Motions and Understanding Crowd Scenes: A Diffusion and Clustering-based Approach

Coherent motions, which represent coherent movements of massive individual particles, are pervasive in natural and social scenarios. Examples include traffic flows and parades of people (cf. Figs 1a and 2a). Since coherent motions can effectively decompose scenes into meaningful semantic parts and facilitate the analysis of complex crowd scenes, they are of increasing importance in crowd-scene ...

متن کامل

DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks

3D scene understanding is important for robots to interact with the 3D world in a meaningful way. Most previous works on 3D scene understanding focus on recognizing geometrical or semantic properties of a scene independently. In this work, we introduce Data Associated Recurrent Neural Networks (DA-RNNs), a novel framework for joint 3D scene mapping and semantic labeling. DA-RNNs use a new recur...

متن کامل

A guide to recurrent neural networks and backpropagation

This paper provides guidance to some of the concepts surrounding recurrent neural networks. Contrary to feedforward networks, recurrent networks can be sensitive, and be adapted to past inputs. Backpropagation learning is described for feedforward networks, adapted to suit our (probabilistic) modeling needs, and extended to cover recurrent networks. The aim of this brief paper is to set the sce...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

Hierarchical Feature For Scene Parsing Using Fully Recurrent Network

In scene parsing, the wide-range contextual information is not effectively encoded. Scene parsing provides segmentation and determines an scene into different regions associated with semantic categories. The main objective of scene parsing is to reduce semantic gap between humans and computer machines on scene understanding. The scenes parsing applications are object detection, text detection o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016